
Behavior Model of Mobile Agent Systems

Serge Chaumette and Pierre Vignéras
LaBRI, Université Bordeaux 1

351, cours de la Libération
33405, Talence, France

{serge.chaumette, pierre.vigneras}@labri.fr

Abstract

The paradigm of mobile agents is used among oth-
ers in the mobile code area. It has been studied for
several years and many implementations are avail-
able. Nevertheless, the technology is far from being
widely accepted for many reasons. One of these rea-
sons is the lack of behavior models of mobile agent
systems that prevents their theoretical study. This
paper presents the mobile agent paradigm, some im-
plementations of it, and a π-calculus model. This
model leads to a new concept that we have called ac-
tive containers. We claim that it is a basic brick on
which any other mobile code paradigm can be built.
Keywords: behavior model, mobile agent system,
active container.

1 Introduction

Five years ago, the community was very excited by
the paradigm of mobile agents. It was very promis-
ing, and people thought that the future of the In-
ternet should give rise to many agents moving from
host to host to perform tasks on behalf of their
users. Many projects were carried out on this sub-
ject, many implementations were achieved [1]. But
one must admit that mobile agents are far from
being widely accepted. It is really hard to find a
publicly available agent server on the Internet.

Among the many reasons that can be given [2],
we believe that models of mobile agent systems are
missing. The only model the aim of which is to
describe the behavior of mobile agent systems has
been found in [3]. But we believe it is too far
from real implementations. For example, it does
not raise security problems related to the language
being used.

We first describe the mobile agent paradigm in
section 2. We then briefly present the π-calculus
that we use to design our model in section 3. Then
our behavior model is proposed in section 4. This
model leads to a new active data structure that we
have called active container presented in section 5.
We finally conclude giving some directions for fu-
ture work.

2 The Paradigm of Mobile
Agents

At least three paradigms are commonly used in
the domain of mobile code [4]: remote evaluation
(REV), code on demand (COD), and mobile agents
(MA). The latter is defined by the ability of a code
component to move to a host where it may continue
its computation using resources available at its des-
tination. In REV and COD, the focus is on the
transfer of code between components; in the mobile
agent paradigm, a whole computational component
is moved to a remote site, along with its state, the
code it needs, and some resources required to per-
form the task is has been created for.

Note that the term “agent” is also used in the
domain of artificial intelligence. So, one may think
that a mobile agent contains some sort of “intelli-
gence”. But this is not necessary, at least in our
model. We define an agent as an autonomous and
independent entity: it is autonomous because it has
the control of its own execution and does not require
any interaction to complete its task; it is indepen-
dent because it is executed in its own thread.

Several constraints exist in mobile agent pro-
gramming such as security, portability, or dynamic
linkage [5]. Hence languages that provide facilities
to deal with some of these issues are naturally more
suited than others. Java is known to be a good
language for distributed programming in general
and for mobile code programming in particular [6].
Therefore we will focus on mobile agent systems
written in Java but we believe our study may be
extended to any other language1.

Almost every Java mobile agent system has an
event-based mechanism to provide name resolu-
tion. When an object moves, some of its refer-
ences must be modified. For example, a moni-
tor must be released before the migration and a
new one acquired at the destination to prevent
deadlocks. References to [Input|Output]Stream
instances must be modified to avoid exceptions
from being thrown due to their non-serializable na-
ture. The Aglets [7] API provides several meth-
ods for this purpose such as onMigrating() and

1Probably with many more difficulties.

onMigration() which are respectively invoked be-
fore and after the migration of an aglet. Voyager [8]
supplies the methods [pre|post]Departure() and
[pre|post]Arrival() that play almost the same
roles. Grasshopper [9] has the equivalent meth-
ods [before|after]move() and Agent OS [10]
also defines two methods onArrival() and
onDispatch(). Almost any mobile agent system
written in Java provides such an event-based mech-
anism2.

3 Overview of the π-calculus
To describe our model, we need a formal notation
to express both communication and migration. Sev-
eral calculus for mobile processes are available [12].
We use the polyadic π-calculus [13, 14, 15].

We consider an infinite set of names X =
{x, y, . . .} and the set of processes Q = {P,Q, . . .}.
A process can have the following forms:

0 is the nil process that does nothing;
F ≡ (λ ~x).P is an abstraction of arity |F | = |~x|;
C ≡ (ν ~y)[~x]P with (~y ⊆ ~x) is a concretion of arity

|C| = |~x|;
σ = z/y is a substitution: the syntactic replace-

ment of y by z; Pσ is the application of this
substitution to P .

x.(λ ~y).P = x.F is an input prefix meaning that
|~y| names are received along the name (port)
x;

x(~y).P = x.C is an output prefix meaning that |~y|
names are sent along the name (port) x;

P +Q is a sum process that can behave either like
P or Q; in particular, they cannot mutually
interact;

P |Q is a parallel process that represents the paral-
lel execution of P and Q; they can act indepen-
dently, and may also communicate if one per-
forms an output and the other an input along
the same port ;

(ν ~x).P is a restriction where the n = |~x| names
are local to P and cannot be immediately used
as ports for communication between P and its
environment; however, they can be used for
communication between components within P ;

F • C is a pseudo application defined as follow:
F ≡ (λ ~x)P , C ≡ (ν ~z)[~y]Q and ~x∩~z = ∅ then
w.F |w.C → F • C

def= (ν ~z)(P{~y/~x}|Q).

With this definition, the reduction rules are the
following:

COMM :(· · ·+ x.F)|(· · ·+ x.C) → F • C

2Since it is impossible in Java to restore the instruction
pointer, Java mobile agent systems only provide weak migra-
tion [11] which usually requires an event-based mechanism.

PAR :
P → P ′

P |Q → P ′|Q

RES :
P → P ′

(ν x)P → (ν x)P ′

STRUCT :
Q ≡ P P → P ′ P ′ ≡ Q′

Q → Q′

To model Java code we use the following nota-
tion:
{X̃#x1, . . . , X̃#xn} is a set of method names.

This set is noted X̃3. We write X̃ � {x1, . . . , xn}
to define X̃. Finally, X̃#xi = X̃#xi

For readers not quite comfortable with the π-
calculus, we give a short example of Java code and
its π-calculus expression:

public class MyClass{
public int ma(int xa){

return plus(xa,2);
}
public type mb(type xb){

...
}
...
public type mz(type xz){

...
}

}

m̃ � {ma,mb, . . . ,mz}

MyClass ≡ (λ m̃)

{
m̃#ma(λ xa, result).

plus[xa, 2, result]+
m̃#mb(λ xb, result).
· · ·+

...
m̃#mz(λ xz, result).

· · ·

}
The code:

MyClass o = new MyClass();
int y = plus(o.ma(3), 2);

is expressed by:

(ν m̃)

{
(MyClass)(m̃) |

(ν y, res)
[

m̃#ma[3, res] | plus[res, 2, y]
]}

Note that variables and methods are accessed
through a port what requires communication.

3The symbol # may be considered as the concatenation
operator.

4 Proposition of a Mobile
Agent System Model

Mobile agents exist only when they are contained
within an agent server. This containment relation is
really important and is the basis of our model. Fur-
thermore, the only way to contact a mobile agent is
through the agent server it resides in4. The server
that contains an agent is called its local server.

Our model has the characteristic that the local
server is the only entity able to invoke the meth-
ods of its contained agents; This characteristic im-
plies that two agents cannot communicate directly.
Hence, when an agent A wants to communicate
with an agent B, it must contact the local server SB

of B and ask it to invoke a method on B. Hence,
an identifier id must be available in order to iden-
tify an agent in its local server. Representing an
agent migration from a host Sa to a host Sb is just
a matter of invalidating the identifier used in Sa

and creating a new one in Sb which will represent
the agent on Sb.

Hence, we consider a network R = S1, . . . , Sn of
agent systems where Si is an agent system that con-
tains ki agents Ai,1, . . . , Ai,ki

. The running system
is expressed by the π-calculus expression:

S1 | {A1,1|A1,2| · · · |A1,k1} |
S2 | {A2,1|A2,2| · · · |A2,k2} |

... |
...

Sn | {An,1|An,2| · · · |An,kn}

An agent server is a set of remotely
accessible services such as createAgent,
sendAgent, receiveAgent, killAgent and a set
of agents only accessible through an identifier id.
Two other names are used internally by the agent
server and for agent creation and destruction:
NewAgent and DeleteAgent.

Mobile agents are defined by the set of methods
used by agent servers on each event of their life
cycle5:
- onCreation(): invoked after the agent is created;
- onMigrating(): invoked just before its migra-
tion;
- onMigration(): invoked just after its migration;
- onDisposing(): invoked just before its destruc-
tion.

The real code of these methods is only known by
the agent and is represented by a set of abstractions:
{C,R, Mo,Mi, D,Extra} where C is the abstrac-
tion related to the creation of the agent; it has three

4This assumption is not always true since some services
may be contained in the server itself (as agents in AgentOS
for example or as external entities in Voyager). But seen
from the outside, the agent server is the one that performs
the communication function on behalf of its contained mobile
agent.

5Here, the model is very inspired by the Aglets [16] sys-
tem, but any other system may be modeled using a similar
approach.

parameters: a “custom” argument, its id and its
local server. Hence, (|C| = 3). R (|R| = 0) repre-
sents the business logic of the agent; Mo (|Mo| = 1)
is the code that is executed after the agent migra-
tion, the new local server is taken as argument; Mi

(|Mi| = 1) is the code run just before the migration,
the destination server is taken as parameter; and D
(|D| = 0) is the code that deals with the destruction
of the agent. The Extra abstraction is not used by
the server and represents the state of the agent and
some other code which may be used by R. Each
abstraction is related to a method name as given in
the table 4.

Abstraction Name
C onCreation
Mi onMigrating
Mo onMigration
D onDisposing

Table 1: Agent methods and abstraction relation-
ship

Two other methods are defined in the agent:
migrate() that is invoked for a migration request
and dispose() that is invoked for a removal re-
quest. These names are not related to abstractions
because they are external, accessible by the agent
and also by any other entity of the whole system
provided it knows the id of the agent. Hence, we
define:

eS � {createAgent, sendAgent,

receiveAgent, killAgent}

gAgentCode � {C, R, Mo, Mi, D, Extra}

gAgentMethod � {onCreation, onMigration,

onMigrating, onDisposing,

migrate, dispose}

4.1 Agent Server Model
An agent server is defined by the following abstrac-
tion:

Server ≡ (λ S̃)
(ν NewAgent,DeleteAgent)

!((Agents)(S̃, NewAgent,DeleteAgent)
|(Services)(S̃, NewAgent,DeleteAgent))

After the creation of two names, NewAgent
and DeleteAgent, the Server abstraction applies
both abstractions Agents and Services. The
replication operator allows the server to wait for
requests indefinitely. A server is instantiated by
the following expression:

(ν eS)(Server)(eS)

The Agents abstraction represents all the agents

contained in the server and is defined as follows:

Agents ≡ (λ S̃,NewAgent,DeleteAgent).

{
NewAgent(λ id, ˜AgentCode).

(ν ˜AgentMethod){
(Agent)(˜AgentCode, ˜AgentMethod,

id, S̃)
|!id[˜AgentCode, ˜AgentMethod]

}
+

DeleteAgent(λ id).
id(λ ˜AgentCode, ˜AgentMethod).˜AgentMethod#onDisposing

}
Agent creation is done through the port NewAgent
which receives a new id and the agent code.
The agent is considered alive after the cre-
ation of its fresh method names ˜AgentMethod
and by the application of the abstraction Agent
(|Agent| = 4) to the following parameters:
(˜AgentCode, ˜AgentMethod, id, S̃)
Thus, the agent knows: the set ˜AgentMethod of its
method names; its identifier id on its local server;
the methods S̃ of its local server.

The creation ends with the output on the port id
of the code and the methods of the agent, what
will make it possible to use it. Removal of an
agent is straightforward: the server invokes the
onDisposing method.

Agent server services are the set of public method
names. For example, createAgent is the service re-
sponsible of the creation of a mobile agent in the
system. It receives the agent code, creates a new id,
and invokes the private NewAgent method which
instantiates the abstraction representing the agent
code, invokes the onCreation method of the new
agent, and returns a fresh id enabling future com-
munication with the agent. Hence, we have:

S̃#createAgent(λ ˜AgentCode, arg, getid).
(ν id)NewAgent[id, ˜AgentCode].

id(λ ˜AgentCode, ˜AgentMethod).˜AgentMethod#onCreation[arg].
getid[id]

Similarly, the sending of an agent by a server S̃

to a server S̃′ needs several steps:

• the reception of the id of the agent to send by
the method S̃#sendAgent;

• the invocation of the method onMigrating of
the agent to migrate;

• the invocation of the method S̃′#receiveAgent
of the destination server;

• the return of the new id of the agent in its new
local destination server.

Hence we have:
S̃#sendAgent(λ id, S̃′, getNewid).

id(λ ˜AgentCode, ˜AgentMethod).˜AgentMethod#onMigrating[S̃′].
(ν getid)S̃′#receiveAgent[˜AgentCode, getid].

getid(λNewid).
getNewid[Newid]

The two other methods receiveAgent and
killAgent are quite identical. The complete model
of the agent server services is:

Services ≡ (λ S̃).

{
S̃#createAgent(λ ˜AgentCode, arg, getid).

(ν id)NewAgent[id, ˜AgentCode].
id(λ ˜AgentCode, ˜AgentMethod).˜AgentMethod#onCreation[arg].
getid[id]

+ S̃#sendAgent(λ id, S̃′, getNewid).
id(λ ˜AgentCode, ˜AgentMethod).˜AgentMethod#onMigrating[S̃′].
(ν getid)S̃′#receiveAgent[˜AgentCode,

getid].
getid(λNewid).
getNewid[Newid]

+ S̃#receiveAgent(λ ˜AgentCode, getid).
(ν id)S̃#NewAgent[id, ˜AgentCode].

id(λ ˜AgentCode, ˜AgentMethod).˜AgentMethod#onMigration.
getid[id]

+ S̃#killAgent(λ id).S̃#DeleteAgent[id]

}

4.2 Mobile Agent Model

An agent may want to communicate with its local
server for instance to request a migration. Other
entities in the whole system may also want to
communicate with it through its id. Its method
onCreation, onDisposing and dispose must be
called only once during all the life of the agent
whereas onMigrating, onMigration and migrate
may be invoked many times. The model of the
agent is therefore as follows:

Agent ≡ (λ ˜AgentCode, ˜AgentMethod, id, S̃)

{
{

(ν run)
[
˜AgentMethod#onCreation(λ arg).

(˜AgentCode#C)(arg, id, S̃).run +˜AgentMethod#onMigration.

(˜AgentCode#Mo)(S̃).run]
|run.(˜AgentCode#R)

}

|
[˜AgentMethod#onMigrating(λ S̃′).

(˜AgentCode#Mi)(S̃′) +˜AgentMethod#onDisposing.

(˜AgentCode#D)
]

|
[˜AgentMethod#migrate(λ S̃′).

S̃#sendAgent[id, S̃′] +˜AgentMethod#dispose.

S̃#killAgent[id]
] }

The method onCreation receives a special argu-
ment6 which represents the required data needed for
the instantiation of the mobile agents. Then the ab-
straction C is applied and the process R is executed
in parallel when a message is sent through the port
run ensuring sequential execution of C followed by
R. Note how a call to onMigrating eliminates the
call to onDisposing using the + operator.

4.3 Studying Our Model
Agent Control. Once created, the agent may
run in R almost anything. Denial of service
is straightforward to achieve in agent systems
written in Java. For example, the instruction
while(true); monopolizes the processor. More-
over, it is not possible to interrupt an agent since
the agent code is run in its own thread, and that in-
terrupting a thread is really a big challenge7. Static
analysis may help, but its cost prevents the mobile
agent paradigm from being interesting since it can
usually be replaced by a more “traditional” one [19].

Furthermore, abstractions C, Mo, Mi and D can
also run “evil” code. For example, if C ≡ P.(R),
the (R) process will run before the end of C. This
problem appears in many mobile agent system im-
plementations and is due to the event model.

Agent Destruction. The π-calculus does not
provide term deletion. Since we do not know
how many agents will communicate with a given
agent, the term id[˜AgentCode, ˜AgentMethod] is
replicated ad infinitum using the “!” operator.
Hence, this term cannot be deleted8. Worst, the R
abstraction for example, unknown from the server
may contain several replications. Terms may ac-
cumulate in the expression through processing of
agent creation. This problem is present in most if
not all mobile agent system implementations [2].

4.4 Summary
The model we propose reflects current implemen-
tations and we have seen many limitations. Other

6This argument differs for each agent and the model needs
the use of the polymorphic π-calculus [17] which is beyond
the scope of this document.

7See [18] for details.
8Nevertheless, if a call through id is no more possible,

then the original process can be simulated with a process
which does not contain id as a name (garbage collector).

problems can be identified using such a model [2].
All are found in almost any implementation of a
mobile agent system written in Java.

5 Active Containers: the Un-
derlying Paradigm

In our mobile agent system model, servers play a
central role in the communication mechanism (cf.
section 4). Hence an agent identifier must allow to
find the server that contains a given agent and to
identify the given agent on this server. A sort of
table must then be used in each agent server for
this purpose. If this table bijectively associates a
key with an agent hosted by a server, then an agent
is identified uniquely in a mobile agent system with
the unique identifier of a given agent server and the
agent key in this agent server.

5.1 Container Definition
From the point of view of a mobile agent system,
the migration of an agent can be achieved by two
basics operations: (1) removing the agent from its
current host server; (2) inserting the agent into its
destination server.

Defining an agent server as a container with the
following interface may be sufficient to express mi-
gration:

void put(Object key, Agent agent);

void remove(Object key);

Agent get(Object key);

The methods put() and remove() are self ex-
planatory. The get() method returns a copy of an
agent.

5.2 Agent Migration
An agent migration is thus easily expressed using a
container API. Consider two agent servers s1 and
s2. The following instructions express an agent mi-
gration from s1 to s2:

Agent a = s1.get(key);

s1.remove(key);

s2.put(key, a);

Note that a supplementary migration occurs in this
code: in the first line the client gets the agent code
what implies a migration. In fact, in a proactive
mobile agent system, it is the agent which decides
of its own migration. In this case, the previous
migration can be written:

s1.remove(myKey);

s2.put(myKey, this);

Hence, the container interface makes it possible
to express migration. But our system must fur-
thermore support inter-agent communication to be
useful.

5.3 Containers as an Active Data
Structure

As defined in section 4, communication between
agents must pass through the agent server. For this
purpose, a new method must be available in the
container API. We define an active container as a
container – as defined in section 5.1 – able to invoke
methods of the objects it contains. The following
method is thus provided:

void call(Object key,

Method m,Object[] args,

Result r);

This method invokes the specified method m of the
object that maps to key in the container with the
argument args and returns the result in the object
r. The method turns our container into an active
data structure. Furthermore, we specify that the
method m must be invoked asynchronously ensur-
ing that agents are autonomous and independent
(cf. section 2). Hence, if an agent a1 wants to com-
municate with another agent, say a2, it has to know
the active container which is storing a2, the key of
a2 and the method it wants to invoke9.

5.4 The model of Active Containers
In π-calculus, names play the role of keys used in
the mapping of our active container. Hence, we
define:

ÃC � {put}
While an object has not been inserted into the

active container, other methods do not exist. An
active container is then defined as:

ActiveContainer ≡ (λ put).

!
{

put(λ F, Õ, handles).(F)(Õ)

|(ν get, call, remove)
handles[get, call, remove].[

!get[F, Õ]

| !(call(λ m, args, result).
(ν future) result[future].

(ν res)(m[args, res]

| res(λ val).future[val]))
]

+ remove}
Even if problems related to the destruction of ob-

jects (cf. section 4.3) do not appear directly in
this model, they are still here: after the recep-
tion of an empty message on the remove name,
the services get and remove become unavailable.

9Method invocation is traditionally abstracted to message
passing.

But, a previous invocation of call may have created
many processes able to communicate directly with-
out the participation of the container. In fact, we
consider this as a feature, named Multi-Protocols
Stored Objects (MPSO) and has an application in
security [20].

Note that once an object has been inserted with
the put() method, the name handles is used to
further invoke the get, remove and call methods
of the container. Note also how the method call
is made asynchronous using a name future which
must be used to handle the result.

5.5 Mobile Agent System Simulation
It seems possible to simulate a mobile agent system
using the active container concept:

S̃ � {createAgent, sendAgent,

receiveAgent, killAgent}

Considering the set:

Ã � {onCreation,C,

onMigration, Mo,

onMigrating,Mi,

onDisposing,D,

run,R}

Our agent server may be written:

Server ≡ (λ S̃)
(ν ÃC)(ActiveContainer)(ÃC)

|(Services)(S̃, ÃC)

Services ≡ (λ S̃, ÃC)!
{

S̃#createAgent(λ Ã, arg, returnid).
(ν handles)(ν id)ÃC#put[Agent, Ã,

handles].
handles(λ get, call, remove).
(ν result)call[Ã#onCreation,

S̃, arg, result].
result(λ future).future(λ val).
(ν dummy)call[Ã#run,0, dummy] |
returnid[id] |
!id[get, call, remove]

+
S̃#sendAgent(λ id, S̃′, returnNewid).

id(λ get, call, remove).
(ν result)call[Ã#onMigrating,

S̃′, result].
result(λ future).future(λ val).
get(λ Agent, Ã).
remove.

S̃#receiveAgent(Ã, returnNewid)
+

S̃#receiveAgent(λ Ã, returnid).
(ν handles)(ν id)ÃC#put[Agent,

Ã, handles].
handles(λ get, call, remove).
(ν result)call[Ã#onMigration,

S̃, result].
result(λ future).future(λ val).
(ν dummy)call[Ã#run,0, dummy] |
returnid[id] |
!id[get, call, remove]

+
S̃#killAgent(λ id).

id(λ get, call, remove).
(ν result)call[Ã#onDisposing, S̃, result].
result(λ future).future(λ val).
remove}

Note the use of the name handles to retrieve the
names get, remove and call mapped to our object.
Note also the expression:

result(λ future).future(λ val)

which allows the synchronous waiting of the asyn-
chronous invocation of call. After the creation
of an agent, i.e., after the insertion in the con-
tainer of the Agent abstraction and of the vector
of names Ã, the agent identifier makes it possible
to retrieve the names call, get and remove. Sending
an agent is achieved by retrieving its names, invok-
ing its onMigrating method synchronously, receiv-
ing a copy, removing the agent from the container
and sending it to the remote server.

The agent may be written:

Agent ≡ (λ id, Ã).

(1) (ν getCurrentServer)

{
(2) (ν setCurrentServer)

[
(3)

[
setCurrentServer(λ S̃).

(4) getCurrentServer[S̃]
]
|[

Ã#onCreation(λ S̃, arg).

setCurrentServer[S̃].(Ã#C)(arg) +
Ã#onMigration(λ S).

setCurrentServer[S̃].(Ã#Mo)(S̃)
]]

|

Ã#run.(Ã#R) |[
Ã#onMigrating(λ S̃).(Ã#Mi)(S̃) +

Ã#onDisposing.

setCurrentServer[0].(Ã#D)
]
|[

Ã#migrate(λ S̃′).getCurrentServer(λ S̃).

S̃#send[id, S̃′] +
Ã#dispose.

getCurrentServer(λ S̃).S̃#kill[id]
]}

Lines (1) to (4) model a single access vari-
able. The methods setCurrentServer and
getCurrentServer are self explanatory. The lat-
ter makes it possible for an agent to request its own
migration via its migrate method.

Intuitively, it seems possible to simulate a mobile
agent system with an active container model. A
bisimulation between the two mobile agent system
models given in this article must be found. For this
purpose, the π-calculus sort system must be used
to resolve the polymorphism problem we raised in
section 4.2. The work of Tom Melham [21] may ease
the work using the proof system HOL [22].

6 Future Work and Conclu-
sion

Our contribution in this paper is both a new be-
havior model of mobile agent systems in π-calculus,
and the active container abstraction which seems to
be an underlying paradigm on top of which many
other things can be built [23, 20, 24]. It seems to
be a good abstraction for distributed and/or paral-
lel programming. As such, we propose the Mandala
framework [25] which contains the JACOb [26] Java
API, where JACOb stands for Java Active Con-
tainer of Objects. With this framework one can
use active containers to develop distributed appli-
cations. As a proof of concept, we have developed
an application called DJFractal [27].

Furthermore, observing the current situation,
many actors in the community have changed their
focus from mobile agent systems to distributed exe-
cution frameworks10. Furthermore, 54% of the links
referenced on the Mobile Agent List [1] are invalid.
One of the reasons [2] may be the fact, given in
this article, that mobile agent systems are actually
based on the active container abstraction. This
abstraction eases the programming of distributed
applications as shown by the adoption of the con-
tainer concept by some standards: J2EE and JavaS-
pace for example. Hence, using the mobile agent
paradigm may be perceived as no more justified.

10Following the three standards J2EE, .NET and CORBA.

References
[1] The mole team. The mobile agent list. Web, 1999.

http://mole.informatik.uni-stuttgart.de/.

[2] P. Vignéras. Vers une programmation locale et dis-
tribuée unifiée au travers de l’utilisation de con-
teneurs actifs et de références asynchrones. PhD
thesis, Université de Bordeaux 1, LaBRI, novem-
ber, 8th 2004.
http://mandala.sf.net/docs/thesis.pdf.

[3] C. Shen and L.T. Chen., 1998. ”UCI Undergradu-
ate Research Journal”.

[4] A. Fuggetta, G.P. Picco, and G. Vigna. Under-
standing Code Mobility. IEEE Transactions on
Software Engineering, 24(5):342–361, 1998.

[5] G. Cugola, C. Ghezzi, G.P. Picco, and G. Vigna.
Analysing mobile code languages. In Second Inter-
national ECOOP Workshop on Mobile Object Sys-
tems, Linz, Austria, July 1996.

[6] H. Damir, C. Dragana, M. Veljko, K. Petar, and
K. Vlada. Mobile agents and Java mobile agents
toolkits. In 33rd Hawaii International Conference
on System Sciences, volume 8, page 8029, Maui,
Hawaii, January 2000. IEEE.

[7] IBM Corporation. Aglets home page, January
2001.
http://www.trl.ibm.co.jp/aglets/ et aussi
http://aglets.sourceforge.net/.

[8] Recursion Software (purchased from ObjectSpace).
Voyager home page, Octobre 2003.
http://www.recursionsw.com/products/-
voyager/.

[9] Object Management Group. Grasshopper home
page, octobre 2003.
http://www.grasshopper.de/.

[10] N. Kothari. AgentOS - A Java based mobile agent
system. ICS Honors Project Final Report.

[11] A. Carzaniga, G.P. Picco, and G. Vigna. Design-
ing distributed applications with a mobile code
paradigm. In Proceedings of the 19th International
Conference on Software Engineering, Boston, MA,
USA, 1997.

[12] U. Nestmann. Links on calculi for mobile processes,
January 2001.
http://lampwww.epfl.ch/mobility/.

[13] R. Milner. The polyadic π-calculus : a tutorial.
Technical report, Laboratory for Foundation of
Computer Science, Computer Science Department,
Edinburgh University, octobre 1991.

[14] D. Walker, R. Milner, and J. Parrow. A calculus of
mobile processes (parts I and II). Technical report,
Laboratory for Foundation of Computer Science,
Computer Science Department, Edinburgh Univer-
sity, juin 1989.

[15] R. Milner. Communicating and Mobile Systems
– The Pi Calculus. Cambridge University Press,
June 1999. ISBN:0521658691.

[16] Lange B. Danny and Oshima Mitsuru. Program-
ming and Deploying Mobile Agents with Java,
chapter Mobile Agents With Java: The Aglets
API. 1998.

[17] Benjamin Pierce and Davide Sangiorgi. Behav-
ioral equivalence in the polymorphic pi-calculus.
In Principles of Programming Languages (POPL),
1997. Full version available as INRIA-Sophia An-
tipolis Rapport de Recherche No. 3042 and as Indi-
ana University Computer Science Technical Report
468.

[18] Sun microsystem. Why are Thread.stop(),
Thread.suspend(), Thread.resume() and
Runtime.runFinalizersOnExit() deprecated?
http://java.sun.com/products/jdk/-
1.2/docs/guide/misc/threadPrimitive-
Deprecation.html.

[19] C.G. Harrison, D.M. Chess, and A. Kershenbaum.
Mobile Agents: Are they a good idea? Technical
report, T. J. Watson Research Center, Yorktown
Heights, New York, 1995.

[20] S. Chaumette and P. Vignéras. Extensible and
customizable just-in-time security (JITS) manage-
ment of client-server communication in java. In
Joubert et al. [28], pages 321–327.

[21] T.F. Melham. A mechanized theory of the pi-
calculus in HOL. Technical report, Departement
d’informatique ‘a l’ universit’e de Glasgow, Ecosse,
1992.

[22] T.F. Melham. Introduction to the HOL theorem
prover. University of Cambridge, Computer Labo-
ratory, Cambridge, England, 1990.

[23] S. Chaumette and P. Vignéras. A framework for
seamlesly making object oriented applications dis-
tributed. In Joubert et al. [28], pages 305–312.

[24] P. Vignéras. Jacob: a software framework to sup-
port the development of e-services, and its com-
parison to enterprise javabeans. In Proceedings of
International Workshop on Performance-Oriented
Application Development for Distributed Architec-
tures (PADDA). Perspectives for Commercial and
Scientific Environments, pages 11–12, April 19-20
2001. Munchen.

[25] P. Vignéras. Mandala. Web page, August 2004.
http://mandala.sf.net/.

[26] S. Chaumette and P. Vignéras. Active containers:
an alternative approach to mobile agents systems.
Second International Symposium on Object Ori-
ented Parallel Environments, ISCOPE 98., decem-
ber 1998. Santa Fe, NM, USA. Poster.

[27] P. Vignéras. DJFractal. Web page, August 2004.
http://djfractal.sf.net/.

[28] G.R. Joubert, W.E. Nagel, F.J. Peters, and W.V.
Walter, editors. Parallel Computing: Software
Technology, Algorithms, Architectures and Appli-
cations, PARCO 2003, Dresden, Germany, vol-
ume 13 of Advances in Parallel Computing. Else-
vier, 2004.

